Histogramme et incertitude-type avec python

Les mesures expérimentales réalisées en travaux pratiques nécessitent souvent une exploitation graphique afin de mieux appréhender l’ensemble des résultats. Pour nous y aider, nous disposons d’outils comme les tableurs (Excel, Calc…), le logiciel LatisPro et le langage de programmation Python

Objectifs en classe de seconde

Objectifs en classe de terminale

Autres cours à consulter

Capacités et compétences travaillées

Les bibliothèques utiles pour tracer un histogramme et calculer

Mathplotlib : la bibliothèque pour tracer un histogramme

import matplotlib.pyplot as plt

plt est le diminutif de mathplotlib.pyplot lorsque nous appellerons des fonctions propres à cette bibliothèque qui permet de tracer de nombreux graphiques :

  • plt.hist (Variable) : permet de tracer l’histogramme.
  • plt.title (« Texte ») : donne un titre à l’histogramme.
  • plt.xlabel (« Texte ») : permet de nommer l’axe des abscisses.
  • plt.ylabel (« Texte ») : permet de nommer l’axe des ordonnées.
  • plt.show () : Affiche l’histogramme.

Pour aller plus loin

Si vous souhaiter customiser davantage votre histogramme, reportez vous à cette page web :
Source – physique-chimie-python.readthedocs.io/

Numpy ou Statistics : les bibliothèques pour calculer

import numpy as np

np est le diminutif de numpy lorsque nous appellerons des fonctions propres à cette bibliothèque qui permet de effectuer des calculs numériques :

  • np.mean (liste) : permet de calculer la moyenne d’une liste ou d’un tableau
  • np.std (liste) : permet de calculer l’écart-type Sx de votre liste ou tableau de mesure.
import statistics as stat

stat le diminutif de statistics lorsque nous appellerons des fonctions propres à cette bibliothèque qui permet de calculer des valeurs statistiques :

  • stat.mean (liste) : permet de calculer la moyenne d’une liste ou d’un tableau
  • np.std (liste) : permet de calculer l’écart-type Sx de votre liste ou tableau de mesure.

Remarque : dans les 2 cas, pour accéder à l’incertitude type u(variable), un calcul sera nécessaire.

Pour aller plus loin

Si vous souhaiter davantage de fonctions pour calculer des statistiques, reportez vous à ces pages web.

Source – docs.python.org

Source – courspython.com

Tracer un histogramme

Soit la situation suivante :

Plusieurs élèves ont mesuré la masse d’un objet avec une balance. L’imprécision de l’instrument de mesure implique différents résultats, certes proches mais légèrement différents… Les réusltats sont consigné dans le tableau ci-dessous :

Tableau horizontal de mesures de masse d'un volume d'eau

Remarque : nous ne prendrons pas en compte la mesure 20,9 g : explication.

A l’aide de la simulation d’expérience « Neticiel python » ci-dessous ou de votre logiciel ou application python, tracer l’histogramme de cette série de mesure.

Néticiel python

Ce neticiel proposé par trinket.io vous permet d’écrire ou de coller votre code python à gauche puis de le tester / exécuter en appuyant sur la flèche.

Etape 1 : Importer la bonne bibliothèque

import matplotlib.pyplot as plt

Etape 2 : Traduire sous forme de liste les mesures expérimentales.

masse = [20.3, 20.4, 20.0, 19.8, 19.9, 20.0, 20.2, 20.3, 20.1]

Etape 3 : Utiliser la bonne fonction pour créer l’histogramme.

plt.hist (masse)

Etape 4 : Donner un titre à l’histogramme et nommer les axes.

plt.title ("Volume d'eau contenu par une éprouvette graduée pour 50 mL mesuré")
plt.xlabel ("Volume (mL)")
plt.ylabel ("Fréquence")

Etape 5 : Ne pas oublier d’indiquer au logiciel d’afficher l’histogramme dans la console.

Calculer la moyenne et l'incertitude type

A l’aide de la simulation d’expérience « Neticiel python » ci-dessus ou de votre logiciel ou application python, calculer la moyenne et l’incertitude-type de la série de mesure précédente.

Etape 1 : Importer une des 2 bibliothèques : numpy OU statistics. Écrire la ligne sous celle de mathplotlib : au début du code.

Pour la bibliothèque Numpy :
import numpy as np
Pour la bibliothèque Statistics :
import statistics as stat

Etape 2 : A la suite des lignes de code du travail précédent « tracer un histogramme », écrire la ligne qui permet de calculer simplement la moyenne grâce à une des 2 bibliothèques.

Pour la bibliothèque Numpy :

moyenne = np.mean(masse)
print (moyenne)

Pour la bibliothèque Statistics :

moyenne = stat.mean(masse)
print (moyenne)

Etape 3 : Ecrire la ligne qui permet de calculer simplement l’écart-type Sx grâce à une des 2 bibliothèques.

Pour la bibliothèque Numpy :

ecarttype = np.std(masse)
print ('L'écart-type Sx =', ecarttype)

Pour la bibliothèque Statistics :

ecarttype = stat.std(masse)
print ('L'écart-type Sx =', ecarttype)

Etape 4 : Calculer l’incertitude-type u(masse). Si vous ne vous souvenez plus de la formule, cliquez ici.

Pour la bibliothèque Numpy :

effectif = len(masse)
incertitudetype = ecarttype / np.sqrt(effectif)
print ('u(masse) =', incertitudetype)

Pour la bibliothèque Statistics :

effectif = len(masse)
incertitudetype = ecarttype/(10**0.5) 
print ('u(masse) =', incertitudetype)

Laisser un commentaire